Calorie Restriction-Regulated Molecular Pathways and Its Impact on Various Age Groups: An Overview

DNA Cell Biol. 2022 May;41(5):459-468. doi: 10.1089/dna.2021.0922. Epub 2022 Apr 22.

Abstract

Calorie restriction (CR) if planned properly with regular exercise at different ages can result in healthy weight loss. CR can also have different beneficial effects on improving lifespan and decreasing the age-associated diseases by regulating physiological, biochemical, and molecular markers. The different pathways regulated by CR include:(1) AMP-activated protein kinase (AMPK), which involves PGC-1α, SIRT1, and SIRT3. AMPK also effects myocyte enhancer factor 2 (MEF2), peroxisome proliferator-activated receptor delta, and peroxisome proliferator-activated receptor alpha, which are involved in mitochondrial biogenesis and lipid oxidation; (2) Forkhead box transcription factor's signaling is related to the DNA repair, lipid metabolism, protection of protein structure, autophagy, and resistance to oxidative stress; (3) Mammalian target of rapamycin (mTOR) signaling, which involves key factors, such as S6 protein kinase-1 (S6K1), mTOR complex-1 (mTORC1), and 4E-binding protein (4E-BP). Under CR conditions, AMPK activation and mTOR inhibition helps in the activation of Ulk1 complex along with the acetyltransferase Mec-17, which is necessary for autophagy; (4) Insulin-like growth factor-1 (IGF-1) pathway downregulation protects against cancer and slows the aging process; (5) Nuclear factor kappa B pathway downregulation decreases the inflammation; and (6) c-Jun N-terminal kinase and p38 kinase regulation as a response to the stress. The acute and chronic CR both shows antidepression and anxiolytic action by effecting ghrelin/GHS-R1a signaling. CR also regulates GSK3β kinase and protects against age-related brain atrophy. CR at young age may show many deleterious effects by effecting different mechanisms. Parental CR before or during conception will also affect the health and development of the offspring by causing many epigenetic modifications that show transgenerational transmission. Maternal CR is associated with intrauterine growth retardation effecting the offspring in their adulthood by developing different metabolic syndromes. The epigenetic changes with response to paternal food supply also linked to offspring health. CR at middle and old age provides a significant preventive impact against the development of age-associated diseases.

Keywords: AMPK; ROS; calorie restriction; mTOR.

Publication types

  • Review

MeSH terms

  • AMP-Activated Protein Kinases* / metabolism
  • Caloric Restriction*
  • Signal Transduction
  • Sirtuin 1 / genetics
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • TOR Serine-Threonine Kinases
  • AMP-Activated Protein Kinases
  • Sirtuin 1