Catalytic Synthesis of Polyribonucleic Acid on Prebiotic Rock Glasses

Astrobiology. 2022 Jun;22(6):629-636. doi: 10.1089/ast.2022.0027. Epub 2022 May 19.

Abstract

Reported here are experiments that show that ribonucleoside triphosphates are converted to polyribonucleic acid when incubated with rock glasses similar to those likely present 4.3-4.4 billion years ago on the Hadean Earth surface, where they were formed by impacts and volcanism. This polyribonucleic acid averages 100-300 nucleotides in length, with a substantial fraction of 3',-5'-dinucleotide linkages. Chemical analyses, including classical methods that were used to prove the structure of natural RNA, establish a polyribonucleic acid structure for these products. The polyribonucleic acid accumulated and was stable for months, with a synthesis rate of 2 × 10-3 pmoles of triphosphate polymerized each hour per gram of glass (25°C, pH 7.5). These results suggest that polyribonucleotides were available to Hadean environments if triphosphates were. As many proposals are emerging describing how triphosphates might have been made on the Hadean Earth, the process observed here offers an important missing step in models for the prebiotic synthesis of RNA.

Keywords: Impact glasses; Mafic rocks; Nucleoside triphosphates; Origin of life; Prebiotic chemistry; RNA world.

MeSH terms

  • Catalysis
  • Earth, Planet*
  • Glass
  • RNA* / chemistry

Substances

  • RNA