Nonabsorbable Iron Binding Polymers Prevent Dietary Iron Absorption for the Treatment of Iron Overload

ACS Macro Lett. 2017 Apr 18;6(4):350-353. doi: 10.1021/acsmacrolett.6b00945. Epub 2017 Mar 20.

Abstract

Chronic iron overload is a serious condition that develops as a consequence of long-term accumulation of iron, eventually overwhelming iron storage systems and causing oxidative stress and subsequent organ damage. Current pharmaceuticals used to treat iron overload typically suffer from toxicities leading to relatively high rates of adverse events. To address this need, we designed a new class of nonabsorbable iron binding polymers (IBPs) that bind and sequester iron within the gastrointestinal (GI) tract. IBPs were synthesized by cross-linking polyallylamine containing various amounts of conjugated 2,3-dihydroxybenzoic acid (DHBA). In vitro studies indicated that IBPs possessed high affinity, substantial binding capacity, and excellent selectivity toward iron. Moreover, in vivo studies demonstrated that IBPs showed no signs of side effects in mice and increased fecal iron excretion when compared to a similar dose of cross-linked polyallylamine. IBPs are a novel, nonabsorbed oral therapeutic agent that may ultimately prevent iron absorption as a safe alternative to iron chelation therapies for patients with hemochromatosis or other iron overload diseases.