Review of the Real and Sometimes Hidden Costs in Proteomics Experimental Workflows

Methods Mol Biol. 2022:2456:1-14. doi: 10.1007/978-1-0716-2124-0_1.

Abstract

A typical proteomics workflow covers all the steps from growing or collecting the cells/tissues/organism, protein extraction, digestion and cleanup, mass spectrometric analysis, and, finally, extensive bioinformatics to derive biological insight from the data. The details of the procedures employed for this can vary widely by laboratory and by sample type: e.g., hard tissues or cells with walls require much more mechanical disruption to extract proteins than do soft tissues, biological fluids, or wall-less cells. Everything then converges on the mass spectrometer, where there are further choices to be made about how to do the analysis. There is one commonality, however, virtually every group around the world now uses liquid chromatography on-line coupled to tandem mass spectrometry, which means that significant amounts of instrument time are dedicated to every sample. There are many other reviews or methods papers, including in this volume, that cover the details of the various procedures involved in proteomic analyses of all types of samples. Our focus here will be on the cost considerations for such analyses, including considerations to ensure that useful data can be obtained the first time a sample is analyzed. Some of these costs are often overlooked, particularly for those groups who operate their own mass spectrometer(s) and do not have to go to a fee-for-service facility to have something analyzed. The chapter presents several challenges and key suggestions in proving hypotheses in proteomics experimental workflow in different biological systems with specific regard to the costs involved, both real and hidden. The detailed methodology for cost-based studies reported in this chapter can help researchers to set up their laboratory with appropriate equipment as well as to identify potential collaborations based on their analytical instrumentation.

Keywords: Automation; Mass spectrometry; Proteomics; Sample preparation; Systems biology.

MeSH terms

  • Chromatography, Liquid / methods
  • Proteins
  • Proteomics* / methods
  • Tandem Mass Spectrometry* / methods
  • Workflow

Substances

  • Proteins