Effects of Common e-Liquid Flavorants and Added Nicotine on Toxicant Formation during Vaping Analyzed by 1H NMR Spectroscopy

Chem Res Toxicol. 2022 Jul 18;35(7):1267-1276. doi: 10.1021/acs.chemrestox.2c00110. Epub 2022 Jun 23.

Abstract

A broad variety of e-liquids are used by e-cigarette consumers. Additives to the e-liquid carrier solvents, propylene glycol and glycerol, often include flavorants and nicotine at various concentrations. Flavorants in general have been reported to increase toxicant formation in e-cigarette aerosols, yet there is still much that remains unknown about the effects of flavorants, nicotine, and flavorants + nicotine on harmful and potentially harmful constituents (HPHCs) when aerosolizing e-liquids. Common flavorants benzaldehyde, vanillin, benzyl alcohol, and trans-cinnamaldehyde have been identified as some of the most concentrated flavorants in some commercial e-liquids, yet there is limited information on their effects on HPHC formation. E-liquids containing flavorants + nicotine are also common, but the specific effects of flavorants + nicotine on toxicant formation remain understudied. We used 1H NMR spectroscopy to evaluate HPHCs and herein report that benzaldehyde, vanillin, benzyl alcohol, trans-cinnamaldehyde, and mixtures of these flavorants significantly increased toxicant formation produced during e-liquid aerosolization compared to unflavored e-liquids. However, e-liquids aerosolized with flavorants + nicotine decreased the HPHCs for benzaldehyde, vanillin, benzyl alcohol, and a "flavorant mixture" but increased the HPHCs for e-liquids containing trans-cinnamaldehyde compared to e-liquids with flavorants and no nicotine. We determined how nicotine affects the production of HPHCs from e-liquids with flavorant + nicotine versus flavorant, herein referred to as the "nicotine degradation factor". Benzaldehyde, vanillin, benzyl alcohol, and a "flavorant mixture" with nicotine showed lower HPHC levels, having nicotine degradation factors <1 for acetaldehyde, acrolein, and total formaldehyde. HPHC formation was most inhibited in e-liquids containing vanillin + nicotine, with a degradation factor of ∼0.5, while trans-cinnamaldehyde gave more HPHC formation when nicotine was present, with a degradation factor of ∼2.5 under the conditions studied. Thus, the effects of flavorant molecules and nicotine are complex and warrant further studies on their impacts in other e-liquid formulations as well as with more devices and heating element types.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aerosols / chemistry
  • Benzaldehydes
  • Benzyl Alcohols
  • Electronic Nicotine Delivery Systems*
  • Flavoring Agents / analysis
  • Hazardous Substances / analysis
  • Magnetic Resonance Spectroscopy
  • Nicotine / chemistry
  • Vaping*

Substances

  • Aerosols
  • Benzaldehydes
  • Benzyl Alcohols
  • Flavoring Agents
  • Hazardous Substances
  • Nicotine