Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies

Cancers (Basel). 2022 Jul 15;14(14):3456. doi: 10.3390/cancers14143456.

Abstract

Venetoclax is a BCL-2 inhibitor that effectively improves clinical outcomes in newly diagnosed, relapsed and refractory acute myeloid leukemia (AML) patients, with complete response rates (with and without complete blood count recovery) ranging between 34-90% and 21-33%, respectively. Here, we aim to give an overview of the efficacy of venetoclax-based therapy for AML patients, as compared to standard chemotherapy, and on factors and mechanisms involved in venetoclax sensitivity and resistance in AML (stem) cells, with the aim to obtain a perspective of response biomarkers and combination therapies that could enhance the sensitivity of AML cells to venetoclax. The presence of molecular aberrancies can predict responses to venetoclax, with a higher response in NPM1-, IDH1/2-, TET2- and relapsed or refractory RUNX1-mutated AML. Decreased sensitivity to venetoclax was observed in patients harboring FLT3-ITD, TP53, K/NRAS or PTPN11 mutations. Moreover, resistance to venetoclax was observed in AML with a monocytic phenotype and patients pre-treated with hypomethylating agents. Resistance to venetoclax can arise due to mutations in BCL-2 or pro-apoptotic proteins, an increased dependency on MCL-1, and usage of additional/alternative sources for energy metabolism, such as glycolysis and fatty acid metabolism. Clinical studies are testing combination therapies that may circumvent resistance, including venetoclax combined with FLT3- and MCL-1 inhibitors, to enhance venetoclax-induced cell death. Other treatments that can potentially synergize with venetoclax, including MEK1/2 and mitochondrial complex inhibitors, need to be evaluated in a clinical setting.

Keywords: AML; biomarkers; resistance; sensitivity; therapeutic combinations; venetoclax (BCL-2 inhibitor).

Publication types

  • Review

Grants and funding

This research was funded by the Dutch Cancer Society grant 12805.