Decreased expression of GRIM-19 induces autophagy through the AMPK/ULK1 signaling pathway during adenomyosis†

Biol Reprod. 2022 Oct 11;107(4):956-966. doi: 10.1093/biolre/ioac151.

Abstract

The processes underlying adenomyosis are similar to those of tumor metastasis, and it is defined as progressive invasion by the endometrium and the subsequent creation of ectopic lesions. GRIM-19 regulates cell death via the mitochondrial respiratory chain. Stress following oxygen deprivation can induce tumor cell autophagy, leading to cell invasion and migration. Here, we revealed that GRIM-19 negatively regulates autophagy, and, at least in adenomyosis, decreased expression of GRIM-19 is accompanied by an increased level of autophagy and 5'-adenosine monophosphate-activated protein kinase-Unc-51 like autophagy activating kinase 1 (AMPK-ULK1) activation. Upregulation of GRIM-19 expression in human primary endometrial cells and ISHIKAWA cells inhibits autophagy via the AMPK-ULK1 pathway and helps control cell invasion and migration. In addition, we also identified increased expression of AMPK and ULK1, and higher levels of autophagy in the uterine tissues of GRIM-19+/- mice. Importantly, the function of the GRIM-19-AMPK-ULK1 axis in regulating autophagy in adenomyosis is similar to that of tumor tissues, which may help elucidate the regulation of adenomyosis tumor-like behavior, and is expected to help identify novel targets for the diagnosis and treatment of adenomyosis.

Keywords: AMPK; GRIM-19; GRIM-19+/− mice; ULK1; adenomyosis; autophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases* / genetics
  • AMP-Activated Protein Kinases* / metabolism
  • Adenomyosis* / genetics
  • Adenosine Monophosphate
  • Animals
  • Apoptosis Regulatory Proteins
  • Autophagy / genetics
  • Autophagy-Related Protein-1 Homolog / genetics
  • Autophagy-Related Protein-1 Homolog / metabolism
  • Female
  • Humans
  • Intracellular Signaling Peptides and Proteins / metabolism
  • Mice
  • NADH, NADPH Oxidoreductases
  • Oxygen
  • Signal Transduction

Substances

  • Apoptosis Regulatory Proteins
  • Intracellular Signaling Peptides and Proteins
  • Adenosine Monophosphate
  • NADH, NADPH Oxidoreductases
  • NDUFA13 protein, human
  • Autophagy-Related Protein-1 Homolog
  • ULK1 protein, human
  • AMP-Activated Protein Kinases
  • Oxygen