The Whole-transcriptome Landscape of Diabetes-related Sarcopenia Reveals the Specific Function of Novel lncRNA Gm20743

Commun Biol. 2022 Aug 1;5(1):774. doi: 10.1038/s42003-022-03728-8.

Abstract

While the exact mechanism remains unclear, type 2 diabetes mellitus increases the risk of sarcopenia which is characterized by decreased muscle mass, strength, and function. Whole-transcriptome RNA sequencing and informatics were performed on the diabetes-induced sarcopenia model of db/db mice. To determine the specific function of lncRNA Gm20743, the detection of Mito-Sox, reactive oxygen species, Ethynyl-2'-deoxyuridine, and myosin heavy chain was performed in overexpressed and knockdown-Gm20743 C2C12 cells. RNA-seq data and informatics revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. We characterized three core candidate lncRNAs Gm20743, Gm35438, 1700047G03Rik, and their potential function. Furthermore, the results suggested lncRNA Gm20743 may be involved in regulating mitochondrial function, oxidative stress, cell proliferation, and myotube differentiation in skeletal muscle cells. These findings significantly improve our understanding of lncRNAs that may mediate muscle mass, strength, and function in diabetes and represent potential therapeutic targets for diabetes-induced sarcopenia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2* / complications
  • Diabetes Mellitus, Type 2* / genetics
  • Mice
  • RNA, Long Noncoding* / genetics
  • RNA, Messenger / genetics
  • Sarcopenia* / genetics
  • Transcriptome

Substances

  • RNA, Long Noncoding
  • RNA, Messenger