Quantitative Analyses and Validation of Phospholipids and Sphingolipids in Ischemic Rat Brains

Metabolites. 2022 Nov 6;12(11):1075. doi: 10.3390/metabo12111075.

Abstract

Prior MALDI mass spectrometry imaging (MALDI-MSI) studies reported significant changes in phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), and sphingomyelins (SMs) in ischemic rat brains yet overlooked the information on other classes of PLs and SLs and provided very little or no validation on the detected lipid markers. Relative quantitation of four classes of PLs and two classes of SLs in the ischemic and normal temporal cortex (TCX), parietal cortex (PCX), and striatum (ST) of rats was performed with hydrophilic interaction chromatography (HILIC)-tandem mass spectrometry (MS/MS) analyses, and the marker lipid species was identified by multivariate data analysis and validated with additional tissue cohorts. The acquired lipid information was sufficient in differentiating individual anatomical regions under different pathological states, identifying region-specific ischemic brain lipid markers and revealing additional PL and SL markers not reported previously. Validation of orthogonal partial least square discriminating analysis (OPLS-DA) identified ischemic brain lipid markers yielded much higher classification accuracy, precision, specificity, sensitivity, and lower false positive and false negative rates than those from the volcano plot analyses using conventional statistical significance and a fold change of two as the cutoff and provided a wider prospective to ischemia-associated brain lipid changes.

Keywords: hydrophilic interaction chromatography–tandem mass spectrometry; ischemic stroke; lipidomics; multivariate data analyses; phospholipids; sphingolipids; tissue lipid biomarkers.