Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in Drosophila

J Neurogenet. 2023 Mar-Dec;37(1-2):25-35. doi: 10.1080/01677063.2022.2144292. Epub 2022 Nov 22.

Abstract

The rhythmic pattern of biological processes controlled by light over 24 h is termed the circadian rhythm. Disturbance of circadian rhythm due to exposure to light at night (LAN) disrupts the sleep-wake cycle and can promote cardiovascular disease, diabetes, cancer, and metabolic disorders in humans. We studied how dim LAN affects the circadian rhythm and metabolism using male Drosophila. Wild-type flies exposed to the dim light of 10 lux at night displayed altered 24 h sleep-wake behavior and expression patterns of circadian rhythm genes. In addition, the flies became more vulnerable to metabolic stress, such as starvation. Whole-body metabolite analysis revealed decreased amounts of branched-chain amino acids (BCAAs), such as isoleucine and valine. The dim light exposure also increased the expression of branched-chain amino acid aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKDC) enzyme complexes that regulate the metabolism of BCAAs. Flies with the Bcat heterozygous mutation were not vulnerable to starvation stress, even when exposed to dim LAN, and hemolymph BCAA levels did not decrease in these flies. Furthermore, the vulnerability to starvation stress was also suppressed when the Bcat expression level was reduced in the whole body, neurons, or fat body during adulthood using conditional GAL4 and RNA interference. Finally, the metabolic vulnerability was reversed when BCAAs were fed to wild-type flies exposed to LAN. Thus, short-term dim light exposure at night affects the expression of circadian genes and BCAA metabolism in Drosophila, implying a novel function of BCAAs in suppressing metabolic stress caused by disrupted circadian rhythm.

Keywords: Circadian rhythm; Drosophila; branched-chain amino acid; branched-chain aminotransferase; metabolic stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Amino Acids, Branched-Chain / metabolism
  • Animals
  • Circadian Rhythm / physiology
  • Drosophila* / metabolism
  • Humans
  • Light
  • Male
  • Transaminases* / genetics
  • Transaminases* / metabolism

Substances

  • branched-chain-amino-acid transaminase
  • Transaminases
  • Amino Acids, Branched-Chain