ATP13A2 modifies mitochondrial localization of overexpressed TOM20 to autolysosomal pathway

PLoS One. 2022 Nov 29;17(11):e0276823. doi: 10.1371/journal.pone.0276823. eCollection 2022.

Abstract

Mutations in ATP13A2 cause Kufor-Rakeb Syndrome (KRS), a juvenile form of Parkinson's Disease (PD). The gene product belongs to a diverse family of ion pumps and mediates polyamine influx from lysosomal lumen. While the biochemical and structural studies highlight its unique mechanics, how PD pathology is linked to ATP13A2 function remains unclear. Here we report that localization of overexpressed TOM20, a mitochondrial outer-membrane protein, is significantly altered upon ATP13A2 expression to partially merge with lysosome. Using Halo-fused version of ATP13A2, ATP13A2 was identified in lysosome and autophagosome. Upon ATP13A2 co-expression, overexpressed TOM20 was found not only in mitochondria but also within ATP13A2-containing autolysosome. This modification of TOM20 localization was inhibited by adding 1-methyl-4-phenylpyridinium (MPP+) and not accompanied with mitophagy induction. We suggest that ATP13A2 may participate in the control of overexpressed proteins targeted to mitochondrial outer-membrane.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagosomes* / genetics
  • Autophagosomes* / physiology
  • Humans
  • Lysosomes* / genetics
  • Lysosomes* / physiology
  • Membrane Proteins
  • Mitochondria / genetics
  • Mitochondria / physiology
  • Mitochondrial Membranes / physiology
  • Mitochondrial Precursor Protein Import Complex Proteins* / physiology
  • Mitophagy / genetics
  • Mitophagy / physiology
  • Parkinsonian Disorders* / genetics
  • Parkinsonian Disorders* / physiopathology
  • Proton-Translocating ATPases* / genetics
  • Proton-Translocating ATPases* / physiology

Substances

  • ATP13A2 protein, human
  • Membrane Proteins
  • Proton-Translocating ATPases
  • TOMM20 protein, human
  • Mitochondrial Precursor Protein Import Complex Proteins

Supplementary concepts

  • Kufor-Rakeb syndrome

Grants and funding

This work was supported by Promotion and Mutual Aid Corporation for Private Schools of Japan (to N.H.), Yasuda Women's University, Scientific Research Aid (to K.T.), Japan Society for the Promotion of Science, 21K06090 (to H.Y.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.