Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics

Anal Chem. 2022 Dec 6;94(48):16604-16613. doi: 10.1021/acs.analchem.2c02362. Epub 2022 Nov 23.

Abstract

Glycosides are a large family of secondary metabolites in plants, which play a critical role in plant growth and development. Due to the complexity and diversity in structures and the limited availability of authentic standards, comprehensive annotation of the glycosides remains a great challenge. In this study, using maize as an example, a deep annotation method of glycosides was proposed based on untargeted liquid chromatography-high-resolution tandem mass spectrometry metabolomics analysis. First, knowledge-based in silico aglycone and glycosyl/acyl-glycosyl libraries were built. A total of 1240 known and potential aglycones from databases and literature were recorded. Next, the MS parameters beneficial to aglycone ion-rich MS/MS were explored using 1782 high-resolution MS/MS spectra of glycosides from the MassBank of North America (MoNA) and confirmed by 52 authentic glycoside standards. Then, screening rules for aglycon ions in MS/MS were recommended. Glycoside candidates were further filtered by MS/MS-based chemical classification and MS/MS similarity of aglycon-glycoside pairs. Finally, the glycosylation sites of flavonoid mono-O-glycosides were recommended by characteristic fragmentation patterns. The developed method was validated using glycosides and nonglycosides from the MoNA library. The annotation accuracy rates were 96.8, 94.9, and 98.0% in negative ion mode (ESI-), positive ion mode (ESI+), and the combined ESI- & ESI+, respectively. The annotation specificity was 99.6% (ESI-), 99.6% (ESI+), and 99.2% (ESI- & ESI+). A total of 274 glycosides (including 34 acyl-glycosides) were tentatively annotated in maize by the developed method. The method enables effective and reliable annotation for plant glycosides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Liquid / methods
  • Glycosides / analysis
  • Metabolomics
  • Plant Extracts / chemistry
  • Spectrometry, Mass, Electrospray Ionization* / methods
  • Tandem Mass Spectrometry* / methods

Substances

  • Glycosides
  • Plant Extracts