Minimal synthetic enhancers reveal control of the probability of transcriptional engagement and its timing by a morphogen gradient

Cell Syst. 2023 Mar 15;14(3):220-236.e3. doi: 10.1016/j.cels.2022.12.008. Epub 2023 Jan 24.

Abstract

How enhancers interpret morphogen gradients to generate gene expression patterns is a central question in developmental biology. Recent studies have proposed that enhancers can dictate whether, when, and at what rate promoters engage in transcription, but the complexity of endogenous enhancers calls for theoretical models with too many free parameters to quantitatively dissect these regulatory strategies. To overcome this limitation, we established a minimal promoter-proximal synthetic enhancer in embryos of Drosophila melanogaster. Here, a gradient of the Dorsal activator is read by a single Dorsal DNA binding site. Using live imaging to quantify transcriptional activity, we found that a single binding site can regulate whether promoters engage in transcription in a concentration-dependent manner. By modulating the binding-site affinity, we determined that a gene's decision to transcribe and its transcriptional onset time can be explained by a simple model where the promoter traverses multiple kinetic barriers before transcription can ensue.

Keywords: Drosophila melanogaster; biophysics; developmental biology; quantitative biology; transcriptional dynamic; transcriptional modeling; transcriptional regulation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster* / genetics
  • Drosophila melanogaster* / metabolism
  • Enhancer Elements, Genetic / genetics
  • Gene Expression Regulation, Developmental / genetics
  • Probability

Substances

  • Drosophila Proteins