Failed down-regulation of PI3K signaling makes autoreactive B cells receptive to bystander T cell help

bioRxiv [Preprint]. 2023 Jan 23:2023.01.23.525206. doi: 10.1101/2023.01.23.525206.

Abstract

The role of T cell help in autoantibody responses is not well understood. Since tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in autoantibody responses resulting from acute cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA-reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. Here we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, while autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells’ cooperation with non-cognate T cell help, as well as by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance.

Significance: Phosphatase suppression of PI3K signaling is an important mechanism by which peripheral autoreactive B cells are kept in an unresponsive/anergic state. Loss of this suppression, due to genetic alleles that confer risk of autoimmunity, often occurs in autoreactive B cells of individuals who develop autoimmune disease. Here we demonstrate that de-repression of PI3K signaling promotes autoantibody responses of a DNA-reactive B cell clone by relaxing dependence of autoantibody responses on T cell-derived helper signals. These results suggest that impaired regulation of PI3K signaling can promote autoantibody responses in two ways: by restoring antigen receptor signaling and by enabling autoreactive B cells to circumvent restrictions imposed by T cell tolerance mechanisms.

Publication types

  • Preprint