Diastereodivergent Desymmetric Annulation to Access Spirooxindoles: Chemical Probes for Mitosis

J Am Chem Soc. 2023 Feb 13. doi: 10.1021/jacs.2c12648. Online ahead of print.

Abstract

Spirooxindoles have emerged as promising architectures for engineering biologically active compounds. The diastereodivergent construction of unique scaffolds of this type with full control of continuous chiral centers including an all-carbon quaternary stereogenic center is yet to be developed. Here, we report an unprecedented diastereodivergent desymmetric [3 + 3] annulation of oxabicyclic alkenes with enals enabled by N-heterocyclic carbene (NHC)/Rh cooperative catalysis, leading to a series of enantiomerically enriched spirooxindole lactones with excellent enantioselectivities (up to >99% ee) and diastereoselectivities (up to >95:5 dr). The combined catalyst system comprises a rhodium complex that controls the configuration at the electrophilic carbon and an NHC catalyst that controls the configuration at the nucleophilic oxindole-containing carbon; thus, four stereoisomers of the spirooxindole products can be readily obtained simply by switching the configurations of the two chiral catalysts. Transformations of the chiral spirooxindoles delivered synthetically useful compounds. Importantly, those chiral spirooxindoles arrested mammalian cells in mitosis and exhibited potent antiproliferative activities against HeLa cells. Significantly, both absolute and relative configurations exert prominent effects on the bioactivities, underscoring great importance of catalytic asymmetric diastereodivergent synthesis beyond creating useful tools for the exploration of structure-activity relationships.