The personalized auditory cortex of the mustached bat: adaptation for echolocation

J Neurophysiol. 1987 Oct;58(4):643-54. doi: 10.1152/jn.1987.58.4.643.

Abstract

1. In the mustached bat, Pteronotus parnellii, the "resting" frequency of the constant-frequency component of the second harmonic (CF2) of the orientation sound (biosonar signal) is different among individuals within a range from 59.69 to 63.33 kHz. The standard deviation of CF2 resting frequency is 0.091 kHz on the average for individual bats. The male's CF2 resting frequency (61.250 +/- 0.534 kHz, n = 58) is 1.040 kHz lower than the female's (62.290 +/- 0.539 kHz, n = 58) on the average. Females' resting frequencies measured in December are not different from those measured in April when almost all of them are pregnant. Therefore, the orientation sound is sexually dimorphic. 2. In the DSCF (Doppler-shifted CF processing) area of the auditory cortex, tonotopic representation differs among individual bats. The higher the CF2 resting frequency of the bat's own sound, the higher the frequencies represented in the DSCF area of that bat. There is a unique match between the tonotopic representation and the CF2 resting frequency. This match indicates that the auditory cortex is "personalized" for echolocation and that the CF2 resting frequency is like a signature of the orientation sound. 3. If a bat's resting frequency is normalized to 61.00 kHz, the DSCF area overrepresents 60.6-62.3 kHz. The central region of this overrepresented band is 61.1-61.2 kHz. This focal band matches the "reference" frequency to which the CF2 frequency of a Doppler-shifted echo is stabilized by Doppler-shift compensation. 4. Since DSCF neurons are extraordinarily sharply tuned in frequency, the personalization of the auditory cortex or system is not only suited for the detection of wing beats of insects, but also for the reduction of the masking effect on echolocation of consepecific's biosonar signals. 5. Because the orientation sound is sexually dimorphic and the auditory cortex is personalized, the tonotopic representation of the auditory cortex is also sexually dimorphic.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Action Potentials
  • Adaptation, Physiological
  • Animals
  • Auditory Cortex / physiology*
  • Chiroptera / physiology*
  • Echolocation / physiology*
  • Female
  • Male
  • Neurons / physiology
  • Orientation / physiology*
  • Sex Factors