IGF-1 boosts mitochondrial function by a Ca2+ uptake-dependent mechanism in cultured human and rat cardiomyocytes

Front Physiol. 2023 Feb 8:14:1106662. doi: 10.3389/fphys.2023.1106662. eCollection 2023.

Abstract

A physiological increase in cardiac workload results in adaptive cardiac remodeling, characterized by increased oxidative metabolism and improvements in cardiac performance. Insulin-like growth factor-1 (IGF-1) has been identified as a critical regulator of physiological cardiac growth, but its precise role in cardiometabolic adaptations to physiological stress remains unresolved. Mitochondrial calcium (Ca2+) handling has been proposed to be required for sustaining key mitochondrial dehydrogenase activity and energy production during increased workload conditions, thus ensuring the adaptive cardiac response. We hypothesized that IGF-1 enhances mitochondrial energy production through a Ca2+-dependent mechanism to ensure adaptive cardiomyocyte growth. We found that stimulation with IGF-1 resulted in increased mitochondrial Ca2+ uptake in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes, estimated by fluorescence microscopy and indirectly by a reduction in the pyruvate dehydrogenase phosphorylation. We showed that IGF-1 modulated the expression of mitochondrial Ca2+ uniporter (MCU) complex subunits and increased the mitochondrial membrane potential; consistent with higher MCU-mediated Ca2+ transport. Finally, we showed that IGF-1 improved mitochondrial respiration through a mechanism dependent on MCU-mediated Ca2+ transport. In conclusion, IGF-1-induced mitochondrial Ca2+ uptake is required to boost oxidative metabolism during cardiomyocyte adaptive growth.

Keywords: MCU complex; human embryonic stem cell derived-cardiomyocytes (hES-CMs); insulin-like growth factor 1 (IGF-1); mitochondrial calcium handling; neonatal rat ventricular myocytes (NRVMs); physiological cardiac hypertrophy.

Grants and funding

BW is supported by The Netherlands Organization for Scientific Research (NWO VENI, grant 016.176.147), the Netherlands Heart Foundation Senior Clinical Scientist Grant (2019T064), and CVON DOUBLE DOSE (grant 2020-8005). SL is supported by FONDAP 15130011 and FONDECYT 1200490.