Project Optimus, an FDA initiative: Considerations for cancer drug development internationally, from an academic perspective

Front Oncol. 2023 Mar 3:13:1144056. doi: 10.3389/fonc.2023.1144056. eCollection 2023.

Abstract

Modern cancer therapeutics are increasingly targeted, bringing the promise of new and improved activity, alongside better tolerability. However, while many are indeed resulting in dramatic improvements in disease control and patient survival, short- and long-term tolerability has not always accompanied it. The choice of dose and schedule is often in the upper range of the therapeutic window, driven by the maximum tolerated dose (MTD) model of previous cytotoxic agents. There is increasing recognition that this needs to change, by taking a more holistic approach to determine the optimal dose for desired biological effects and tolerability early in clinical development. In the US, the FDA's Oncology Centre of Excellence is addressing this via the Project Optimus initiative: aiming to reform dose optimisation studies so that they can demonstrate the most appropriate dose selection. Early clinical development will need to demonstrate the dose-exposure, -pharmacodynamic, -toxicity and -activity relationships, including randomised evaluations for dose selection. Regulatory agencies outside the US are similarly exploring this. Along with Australia, Brazil, Canada, Israel, Singapore and Switzerland, the UK participates in Project Orbis, a collaborative program with the FDA to accelerate patient access to new cancer medicines through coordinated regulatory review. Close alignment with Project Optimus will be important internationally and will require changes across industry, including for academic units and small biotech. We discuss our perspective on the implications, and opportunities, for early phase oncology trials as a uniquely charity-funded drug development facility, the Centre for Drug Development within the Cancer Research UK charity.

Keywords: FDA – Food and Drug Administration; Project Optimus; United Kingdom; academic; cancer; drug development [MeSH]; international; oncology.