Enhanced Mitochondria-SR Tethering Triggers Adaptive Cardiac Muscle Remodeling

Circ Res. 2023 May 26;132(11):e171-e187. doi: 10.1161/CIRCRESAHA.122.321833. Epub 2023 Apr 14.

Abstract

Background: Cardiac contractile function requires high energy from mitochondria, and Ca2+ from the sarcoplasmic reticulum (SR). Via local Ca2+ transfer at close mitochondria-SR contacts, cardiac excitation feedforward regulates mitochondrial ATP production to match surges in demand (excitation-bioenergetics coupling). However, pathological stresses may cause mitochondrial Ca2+ overload, excessive reactive oxygen species production and permeability transition, risking homeostatic collapse and myocyte loss. Excitation-bioenergetics coupling involves mitochondria-SR tethers but the role of tethering in cardiac physiology/pathology is debated. Endogenous tether proteins are multifunctional; therefore, nonselective targets to scrutinize interorganelle linkage. Here, we assessed the physiological/pathological relevance of selective chronic enhancement of cardiac mitochondria-SR tethering.

Methods: We introduced to mice a cardiac muscle-specific engineered tether (linker) transgene with a fluorescent protein core and deployed 2D/3D electron microscopy, biochemical approaches, fluorescence imaging, in vivo and ex vivo cardiac performance monitoring and stress challenges to characterize the linker phenotype.

Results: Expressed in the mature cardiomyocytes, the linker expanded and tightened individual mitochondria-junctional SR contacts; but also evoked a marked remodeling with large dense mitochondrial clusters that excluded dyads. Yet, excitation-bioenergetics coupling remained well-preserved, likely due to more longitudinal mitochondria-dyad contacts and nanotunnelling between mitochondria exposed to junctional SR and those sealed away from junctional SR. Remarkably, the linker decreased female vulnerability to acute massive β-adrenergic stress. It also reduced myocyte death and mitochondrial calcium-overload-associated myocardial impairment in ex vivo ischemia/reperfusion injury.

Conclusions: We propose that mitochondria-SR/endoplasmic reticulum contacts operate at a structural optimum. Although acute changes in tethering may cause dysfunction, upon chronic enhancement of contacts from early life, adaptive remodeling of the organelles shifts the system to a new, stable structural optimum. This remodeling balances the individually enhanced mitochondrion-junctional SR crosstalk and excitation-bioenergetics coupling, by increasing the connected mitochondrial pool and, presumably, Ca2+/reactive oxygen species capacity, which then improves the resilience to stresses associated with dysregulated hyperactive Ca2+ signaling.

Keywords: ischemia; mitochondria; muscle cells; myocardium; reperfusion; sarcoplasmic reticulum; transgenes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium Signaling*
  • Female
  • Mice
  • Mitochondria, Heart / metabolism
  • Myocardium / metabolism
  • Myocytes, Cardiac / metabolism
  • Reactive Oxygen Species / metabolism
  • Sarcoplasmic Reticulum* / metabolism

Substances

  • Reactive Oxygen Species
  • Calcium