Paraburkholderia flagellata sp. nov. and Paraburkholderia adhaesiva sp. nov., two novel species isolated from forest soil in Dinghushan Biosphere Reserve in Guangdong, China

Antonie Van Leeuwenhoek. 2023 Oct;116(10):1023-1035. doi: 10.1007/s10482-023-01867-4. Epub 2023 Aug 17.

Abstract

Two Gram-stain-negative, aerobic, motile and short rod strains, designated 4D117T and ZD32-2T, were isolated from the forest soils. Strains 4D117T and ZD32-2T grew optimally at pH 4.0-6.5, 20-33 °C and pH 4.5-7.0, 33 °C, respectively, and both at 0.5% (w/v) NaCl concentration. Strains 4D117T and ZD32-2T shared the highest 16S rRNA gene sequence similarity with P. acidiphila 7Q-K02T (99.1%) and P. ferrariae NBRC 106233T (98.7%), respectively. The genome size and G + C contents of strains 4D117T and ZD32-2T were 9,002,095 bp, 62.9% and 6,974,420 bp, 61.7%, respectively. The dDDH and ANI values between strains 4D117T, ZD32-2T and closely related Paraburkholderia species were in the ranges of 21.9-51.6% and 82.9-94.4%, and 81.7% and 25.4% between themself, respectively. Functional genomic analysis showed both strains were capable of degrading contaminants, such as benzoate, anthranilic acid and catechol for 4D117T, and benzene and catechol for ZD32-2T, indicating that they may have potentials for soil pollutant treatment. The main polar lipids of strains 4D117T and ZD32-2T were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Strain 4D117T contained C16:0, C19:0 cyclo ω8c and C18:1 ω7c and/or C18:1 ω6c, while strain ZD32-2T had C16:0 and C17:0 cyclo as their major cellular fatty acids (> 10%). Based on the phenotypic characters and genomic data, strains 4D117T and ZD32-2T represent two novel species of genus Paraburkholderia, for which the names Paraburkholderia flagellata sp. nov. (type strain 4D117T = GDMCC 1.2617T = NBRC 115278T) and Paraburkholderia adhaesiva sp. nov. (type strain ZD32-2T = GDMCC 1.2622T = NBRC 115282T) are proposed.

Keywords: Adhaesiva; Flagellate; Paraburkholderia; Phylogeny; Taxonomy.

MeSH terms

  • Burkholderiaceae* / genetics
  • Catechols
  • China
  • Forests
  • RNA, Ribosomal, 16S / genetics
  • Soil

Substances

  • RNA, Ribosomal, 16S
  • Catechols
  • Soil