Whole-genome sequencing provides insights into a novel species: Providencia hangzhouensis associated with urinary tract infections

Microbiol Spectr. 2023 Sep 21;11(5):e0122723. doi: 10.1128/spectrum.01227-23. Online ahead of print.

Abstract

Providencia rettgeri is a clinically significant opportunistic pathogen that is involved in urinary tract infections. Due to the resolution limitations of identification, distinguishing P. rettgeri from closely related species is challenging by commercial biochemical test systems. Here, we first reported a novel species, Providencia hangzhouensis, which had been misidentified as P. rettgeri. Exhibiting ≤91.97% average nucleotide identity (ANI) and ≤46.10% in silico DNA-DNA hybridization values with all known Providencia species, P. hangzhouensis falls well beneath the established species-defining thresholds. We conducted a population genomics analysis of P. hangzhouensis isolates worldwide. Our study revealed that P. hangzhouensis has emerged in many countries and has formed several transmission clusters. We found that P. hangzhouensis shared the highest ANI values (91.54% and 91.97%) with P. rettgeri and P. huaxiensis, respectively. The pan-genome analysis revealed that these three species possessed a similar component of pan-genomes. Two genes associated with metabolism, folE2 and ccmM, were identified to be specific to P. hangzhouensis. Furthermore, we also observed that carbapenem-resistance genes frequently occur in P. hangzhouensis with the blaIMP-27 being the most prevalent (46.15%; 36/78). The emergence of P. hangzhouensis is often accompanied by extended-spectrum β-lactamase and carbapenem-resistance genes, and calls for tailored surveillance of this species as a clinically relevant species in the future. IMPORTANCE Our study has identified and characterized a novel species, Providencia hangzhouensis, which is associated with urinary tract infections and was previously misidentified as Providencia rettgeri. Through this study, we have identified specific genes unique to P. hangzhouensis, which could serve as marker genes for rapid PCR identification. Additionally, our findings suggest that the emergence of P. hangzhouensis is often accompanied by extended-spectrum β-lactamase and carbapenem-resistance genes, emphasizing the need for attention to clinical management and the importance of accurate species identification and proper drug use.

Keywords: Providencia hangzhouensis; Providencia huaxiensis; Providencia rettgeri; carbapenem resistance; novel species; pan-genome analysis.