Promotion Effect of Coexposure to a High-Fat Diet and Nano-Diethylnitrosamine on the Progression of Fatty Liver Malignant Transformation into Liver Cancer

Int J Mol Sci. 2023 Sep 15;24(18):14162. doi: 10.3390/ijms241814162.

Abstract

Overconsumption of high-fat foods increases the risk of fatty liver disease (FLD) and liver cancer with long pathogenic cycles. It is also known that the intake of the chemical poison nitrosamine and its nanopreparations can promote the development of liver injuries, such as FLD, and hepatic fibrosis, and significantly shorten the formation time of the liver cancer cycle. The present work confirmed that the coexposure of a high-fat diet (HFD) and nano-diethylnitrosamine (nano-DEN) altered the tumor microenvironment and studied the effect of this coexposure on the progression of fatty liver malignant transformation into liver cancer. Gene transcriptomics and immunostaining were used to evaluate the tumor promotion effect of the coexposure in mice. After coexposure treatment, tumor nodules were obviously increased, and inflammation levels were elevated. The liver transcriptomics analysis showed that the expression levels of inflammatory, fatty, and fibrosis-related factors in the coexposed group were increased in comparison with the nano-DEN- and high-fat-alone groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that coexposure aggravated the high expression of genes related to the carcinomatous pathway and accelerated the formation of the tumor microenvironment. The immunohistochemical staining results showed that the coexposure significantly increased the abnormal changes in proteins related to inflammation, proliferation, aging, and hypoxia in mouse liver tissues. The coexposure of high fat and nano-DEN aggravated the process of steatosis and carcinogenesis. In conclusion, the habitual consumption of pickled foods containing nitrosamines in a daily HFD significantly increases the risk of liver pathology lesions progressing from FLD to liver cancer.

Keywords: fatty liver; high-fat diet; liver cancer; nano-diethylnitrosamine; transcriptomics.