Microtubule search-and-capture model evaluates the effect of chromosomal volume conservation on spindle assembly during mitosis

Phys Rev E. 2023 Sep;108(3-1):034401. doi: 10.1103/PhysRevE.108.034401.

Abstract

Variation in the chromosome numbers can arise from the erroneous mitosis or fusion and fission of chromosomes. While the mitotic errors lead to an increase or decrease in the overall chromosomal substance in the daughter cells, fission and fusion keep this conserved. Variations in chromosome numbers are assumed to be a crucial driver of speciation. For example, the members of the muntjac species are known to have very different karyotypes with the chromosome numbers varying from 2n=70+3B in the brown brocket deer to 2n=46 in the Chinese muntjac and 2n=6/7 in the Indian muntjac. The chromosomal content in the nucleus of these closely related mammals is roughly the same and various chromosome fusion and fission pathways have been suggested as the evolution process of these karyotypes. Similar trends can also be found in lepidoptera and yeast species which show a wide variation of chromosome numbers. The effect of chromosome number variation on the spindle assembly time and accuracy is still not properly addressed. We computationally investigate the effect of conservation of the total chromosomal substance on the spindle assembly during prometaphase. Our results suggest that chromosomal fusion pathways aid the microtubule-driven search and capture of the kinetochore in cells with monocentric chromosomes. We further report a comparative analysis of the site and percentage of amphitelic captures, dependence on cell shape, and position of the kinetochore in respect to chromosomal volume partitioning.

MeSH terms

  • Animals
  • Deer* / genetics
  • Kinetochores
  • Microtubules
  • Mitosis
  • Muntjacs* / genetics