Role of inflammation and immunity in vascular calcification: a bibliometric and visual analysis, 2000-2022

Front Cardiovasc Med. 2023 Oct 30:10:1258230. doi: 10.3389/fcvm.2023.1258230. eCollection 2023.

Abstract

Background: In recent years, a great deal of research has been done on vascular calcification (VC), and inflammation and immunity have been displayed to play important roles in the mechanism of VC. However, to date, no comprehensive or systematic bibliometric analyses have been conducted on this topic.

Methods: Articles and reviews on the roles of inflammation and immunity in VC were obtained from the Web of Science Core Collection on August 5, 2022. Four scientometric software packages-HistCite, CiteSpace, VOSviewer, and R-bibliometrix-were used for the bibliometric and knowledge mapping analyses.

Results: The obtained 1,868 papers were published in 627 academic journals by 9,595 authors of 2,217 institutions from 69 countries. The annual number of publications showed a clear growth trend. The USA and China were the most productive countries. Karolinska Institutet, Harvard University, and the University of Washington were the most active institutions. Stenvinkel P published the most articles, whereas Demer LL received the most citations. Atherosclerosis published the most papers, while Circulation was the most highly cited journal. The largest cluster among the 22 clusters, based on the analysis of co-citations, was osteo-/chondrogenic transdifferentiation. "Vascular calcification," "inflammation," "chronic kidney disease," and "expression" were the main keywords in the field. The keyword "extracellular vesicle" attracted great attention in recent years with the strongest citation burst.

Conclusions: Osteo-/chondrogenic transdifferentiation is the primary research topic in this field. Extracellular vesicles are expected to become a new research focus for exploring the inflammatory and immune mechanisms of VC.

Keywords: CiteSpace; HistCite; VOSviewer; bibliometric analysis; extracellular vesicles; immunity; inflammation; vascular calcification.

Grants and funding

The authors declare financial support was received for the research, authorship, and/or publication of this article.