Porous Three-Dimensional Polyurethane Scaffolds Promote Scar-Free Endogenous Regeneration After Acute Brain Hemorrhage

Transl Stroke Res. 2023 Nov 23. doi: 10.1007/s12975-023-01212-x. Online ahead of print.

Abstract

Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke and is associated with significant morbidity and mortality. Despite advances in the clinical treatment of ICH, limited progress has been made regarding endogenous brain regeneration after ICH. Failure of brain regeneration is mainly attributed to the inhibitive regenerative microenvironment caused by secondary injury after ICH. In this study, we investigated a three-dimensional biodegradable waterborne polyurethane (BWPU) scaffold as a tool to promote brain regeneration after ICH. After implantation into the cavity following hematoma evacuation, these implanted scaffolds could act as a reservoir; store a series of necrotic debris, cytokines, and chemokines; and attract microglia/macrophages to their pores. Subsequently, these microglia/macrophages were polarized into the M1-like subtype to eliminate these substances. This process disperses M1-like immune cells and prevents the formation of dense glial scar-free structures after ICH. Inflammatory cells in scaffolds include scar-free secreted growth factors and extracellular matrix (ECM) proteins, and further induce a M2-like immune cells enriched regeneration-predominant microenvironment to promote endogenous brain regeneration with functional recovery. In summary, in this work, we have revealed the potential and mechanism of the BWPU scaffold as a tool to promote endogenous brain tissue regeneration after ICH.

Keywords: Brain hemorrhage; Brain regeneration; Polyurethane; Stroke; Tissue engineering scaffold.