The mTORC2 signaling network: targets and cross-talks

Biochem J. 2024 Jan 25;481(2):45-91. doi: 10.1042/BCJ20220325.

Abstract

The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.

Keywords: Akt; SIN1; cell growth; mTOR; mTORC2; metabolism; rictor.

Publication types

  • Review

MeSH terms

  • Mechanistic Target of Rapamycin Complex 1
  • Mechanistic Target of Rapamycin Complex 2
  • Signal Transduction*
  • Sirolimus
  • TOR Serine-Threonine Kinases* / genetics

Substances

  • TOR Serine-Threonine Kinases
  • Mechanistic Target of Rapamycin Complex 2
  • Mechanistic Target of Rapamycin Complex 1
  • Sirolimus