GENERATION OF TOLEROGENIC DENDRITIC CELLS UNDER THE PERSISTENT INFLAMMATION STIMULATION

Shock. 2024 Mar 1;61(3):454-464. doi: 10.1097/SHK.0000000000002318. Epub 2024 Feb 27.

Abstract

Immunosuppression, commonly accompanied by persistent inflammation, is a key feature in the later phase of sepsis. However, the pathophysiological mechanisms underlying this phenomenon remain unclear. Dendritic cells (DCs), specifically tolerogenic DCs (tolDCs), play a crucial role in this process by regulating immune responses through inducing T cell anergy and releasing anti-inflammatory cytokines. Nevertheless, the existing cell models are inadequate for investigating tolDCs during the immunosuppressive phase of sepsis. Therefore, this study aimed to develop a novel in vitro model to generate tolDCs under chronic inflammatory conditions. We have successfully generated tolDCs by exposing them to sublethal lipopolysaccharide (LPS) for 72 h while preserving cell viability. Considering that IL-10-induced tolDCs (IL-10-tolDCs) are well-established models, we compared the immunological tolerance between LPS-tolDCs and IL-10-tolDCs. Our findings indicated that both LPS-tolDCs and IL-10-tolDCs exhibited reduced expression of maturation markers, whereas their levels of inhibitory markers were elevated. Furthermore, the immunoregulatory activities of LPS-tolDCs and IL-10-tolDCs were found to be comparable. These dysfunctions include impaired antigen presenting capacity and suppression of T cell activation, proliferation, and differentiation. Notably, compared with IL-10-tolDCs, LPS-tolDCs showed a reduced response in maturation and cytokine production upon stimulation, indicating their potential as a better model for research. Overall, in comparison with IL-10-tolDCs, our data suggest that the immunological dysfunctions shown in LPS-tolDCs could more effectively elucidate the increased susceptibility to secondary infections during sepsis. Consequently, LPS-tolDCs have emerged as promising therapeutic targets for ameliorating the immunosuppressed state in septic patients.

MeSH terms

  • Dendritic Cells / metabolism
  • Humans
  • Immune Tolerance
  • Inflammation / metabolism
  • Interleukin-10* / metabolism
  • Lipopolysaccharides / pharmacology
  • Sepsis* / metabolism

Substances

  • Interleukin-10
  • Lipopolysaccharides