The endoplasmic reticulum (ER) network is highly complex and highly dynamic in its geometry, and undergoes extensive remodeling and bulk flow. It is known that the ER dynamics are driven by actin-myosin dependent processes. ER motion through the cytoplasm will cause forces on the cytoplasm that will induce flow. However, ER will also clearly be passively transported by the bulk cytoplasmic streaming. We take the complex ER network structure into account and propose a positive-feedback mechanism among myosin-like motors, actin alignment, ER network dynamics for the emergence of ER flow. Using this model, we demonstrate that ER streaming may be an emergent feature of this three-way interaction and that the persistent-point density may be a key driver of the emergence of ER streaming.
Keywords: Actin; Cytoplasmic streaming; ER streaming; Molecular motor.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.