Two coupled oscillators as a model for the coordinated finger tapping by both hands

Biol Cybern. 1980;37(4):219-25. doi: 10.1007/BF00337040.

Abstract

Recently, it was found that rhythmic movements (e.g. locomotion, swimmeret beating) are controlled by mutually coupled endogeneous neural oscillators (Kennedy and Davis, 1977; Pearson and Iles, 1973; Stein, 1974; Shik and Orlovsky, 1976; Grillner and Zangger, 1979). Meanwhile, it has been found out that the phase resetting experiment is useful to investigate the interaction of neural oscillators (Perkel et al., 1963; Stein, 1974). In the preceding paper (Yamanishi et al., 1979), we studied the functional interaction between the neural oscillatory which is assumed to control finger tapping and the neural networks which control some tasks. The tasks were imposed on the subject as the perturbation of the phase resetting experiment. In this paper, we investigate the control mechanism of the coordinated finger tapping by both hands. First, the subjects were instructed to coordinate the finger tapping by both hands so as to keep the phase difference between two hands constant. The performance was evaluated by a systematic error and a standard deviation of phase differences. Second, we propose two coupled neural oscillators as a model for the coordinated finger tapping. Dynamical behavior of the model system is analyzed by using phase transition curves which were measured on one hand finger tapping in the preivous experiment (Yamanishi et al., 1979). Prediction by the model is in good agreement with the results of the experiments. Therefore, it is suggested that the neural mechanism which controls the coordinated finger tapping may be composed of a coupled system of two neural oscillators each of which controls the right and the left finger tapping respectively.

MeSH terms

  • Fingers / innervation*
  • Functional Laterality
  • Humans
  • Learning
  • Mathematics
  • Models, Neurological
  • Oscillometry
  • Periodicity
  • Time Factors