Charge pair interactions stabilizing ferredoxin-ferredoxin reductase complexes. Identification by complementary site-specific mutations

J Biol Chem. 1993 Aug 15;268(23):17126-30.

Abstract

Ferredoxin reductase (Fd-reductase) supplies electrons to mitochondrial steroid hydroxylase cytochrome P450 enzymes via a [2Fe-2S] ferredoxin. Chemical labeling studies with bovine Fd-reductase have implicated Lys-243 as important in binding to bovine ferredoxin (Hamamoto, I., Kazutaka, K., Tanaka, S., and Ichikawa, Y. (1988) Biochim. Biophys. Acta 953, 207-213). We have used site-directed mutagenesis to examine the role of charged residues in this region of human Fd-reductase in ferredoxin binding. Mutant proteins were expressed in Escherichia coli and were assayed for activity by ferredoxin-mediated electron transfer to cytochrome c. Replacement of Lys-242 (homologous to Lys-243 in bovine Fd-reductase) with Gln and replacement of Arg-241 with Ser had little effect (2.7- and 3.6-fold increased Km, respectively). In contrast, mutants at positions 239 and 243 (R239S and R243Q) exhibited markedly lower affinity for ferredoxin (17.5- and 1,600-fold increased Km, respectively). Studies were also carried out with two ferredoxin charge mutants shown previously to have lowered affinity for Fd-reductase (Coghlan, V. M., and Vickery, L. E. (1991) J. Biol. Chem. 266, 18606-18612). Comparisons of the binding of ferredoxin mutants D76N and D79N to Fd-reductase mutants R239S and R243Q suggest that Arg-239 and Arg-243 of Fd-reductase each interact directly with both Asp-76 and Asp-79 of ferredoxin during formation of the complex between the two proteins. These results support the hypothesis that specific electrostatic interactions involving this region are important in stabilizing the ferredoxin-Fd-reductase complex.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Ferredoxin-NADP Reductase / chemistry
  • Ferredoxin-NADP Reductase / genetics
  • Ferredoxin-NADP Reductase / metabolism*
  • Ferredoxins / chemistry
  • Ferredoxins / metabolism*
  • Humans
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed

Substances

  • Ferredoxins
  • Ferredoxin-NADP Reductase