Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi

J Comp Neurol. 1993 Feb 15;328(3):313-50. doi: 10.1002/cne.903280302.

Abstract

Retinal projections and visual thalamo-cortical connections were studied in the subterranean mole rat, belonging to the superspecies Spalax ehrenbergi, by anterograde and retrograde tracing techniques. Quantitative image analysis was used to estimate the relative density and distribution of retinal input to different primary visual nuclei. The visual system of Spalax presents a mosaic of both regressive and progressive morphological features. Following intraocular injections of horseradish peroxidase conjugates, the retina was found to project bilaterally to all visual structures described as receiving retinal afferents in non-fossorial rodents. Structures involved in form analysis and visually guided behaviors are reduced in size by more than 90%, receive a sparse retinal innervation, and are cytoarchitecturally poorly differentiated. The dorsal lateral geniculate nucleus, as defined by cyto- and myelo-architecture, cytochrome oxidase, and acetylcholinesterase distribution as well as by afferent and efferent connections, consists of a narrow sheet 3-5 neurons thick, in the dorsal thalamus. Connections with visual cortex are topographically organized but multiple cortical injections result in widespread and overlapping distributions of geniculate neurons, thus indicating that the cortical map of visual space is imprecise. The superficial layers of the superior colliculus are collapsed to a single layer, and the diffuse ipsilateral distribution of retinal afferents also suggests a lack of precise retinotopic relations. In the pretectum, both the olivary pretectal nucleus and the nucleus of the optic tract could be identified as receiving ipsilateral and contralateral retinal projections. The ventral lateral geniculate nucleus is also bilaterally innervated, but distinct subdivisions of this nucleus or the intergeniculate leaflet could not be distinguished. The retina sends a sparse projection to the dorsal and lateral terminal nuclei of the accessory optic system. The medial terminal nucleus is not present. In contrast to the above, structures of the "non-image forming" visual pathway involved in photoperiodic perception are well developed in Spalax. The suprachiasmatic nucleus receives a bilateral projection from the retina and the absolute size, cytoarchitecture, density, and distribution of retinal afferents in Spalax are comparable with those of other rodents. A relatively hypertrophied retinal projection is observed in the bed nucleus of the stria terminalis. Other regions which receive sparse visual input include the lateral and anterior hypothalamic areas, the retrochiasmatic region, the sub-paraventricular zone, the paraventricular hypothalamic nucleus, the anteroventral and anterodorsal nuclei, the lateral habenula, the mediodorsal nucleus, and the basal telencephalon.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Biological Evolution
  • Chiroptera / anatomy & histology
  • Darkness
  • Disease Models, Animal*
  • Eye Enucleation
  • Geniculate Bodies / anatomy & histology
  • Humans
  • Microphthalmos*
  • Nerve Degeneration
  • Retina / anatomy & histology
  • Rodentia / anatomy & histology*
  • Species Specificity
  • Suprachiasmatic Nucleus / anatomy & histology
  • Thalamus / anatomy & histology
  • Visual Cortex / anatomy & histology
  • Visual Pathways / anatomy & histology*
  • Visual Pathways / physiology