Induction of release of secretory nonpancreatic phospholipase A2 from human articular chondrocytes

J Rheumatol. 1995 Nov;22(11):2114-9.

Abstract

Objective: Secretory nonpancreatic phospholipase A2 (sPLA2) is a known inducer/promoter of the inflammatory process in the joints. It correlates with disease activity in adult and juvenile rheumatoid arthritis. Synovial fluids contain high concentrations of sPLA2. We discovered that human articular cartilage contains large quantities of sPLA2 and that culture chondrocytes constitutively synthesize and release sPLA2. To test the mechanism controlling the release of sPLA2, we exposed cultured human articular chondrocytes to cytokines and other agents, known to induce sPLA2 in other cells.

Methods: Chondrocytes obtained from cartilage of normal appearance from rheumatoid and osteoarthritic joints, and from normal, neonatal joints were compared to rabbit articular chondrocytes. Radiolabeled Escherichia coli derived phospholipid assay and ELISA technique using monoclonal antibodies against recombinant human synovial type sPLA2 were employed. The cells were grown as monolayers as well as in alginate beads.

Results: Human articular chondrocytes from both arthritic and neonatal joints released sPLA2 constitutively but could not be further stimulated with interleukin-1 beta (IL-1 beta), tumor necrosis factor alpha (TNF-alpha), IL-6, oncostatin M, lipopolysaccharide (LPS), or forskolin. Marked stimulation was observed when the cells were exposed to 8-bromo cyclic adenosine monophosphate (cAMP). Growing the cells as monolayers or in alginate beads did not change the results. In contrast to human cells, rabbit chondrocytes responded to IL-1 beta and IL-1/TNF, but not to TNF-alpha alone, with a very marked increase in extracellular sPLA2 activity.

Conclusion: Human articular chondrocytes synthesize and constitutively release sPLA2. Such continuous release is most probably responsible for the high concentration of sPLA2 in articular cartilage and may be the source of synovial fluid sPLA2. To our knowledge, human articular chondrocytes are the only sPLA2 producing cells tested to date that do not respond to cytokine stimulation with increased sPLA2 activity; yet enhancement was seen with 8-bromo cAMP. It seems therefore that, human articular chondrocytes possess signalling mechanisms for the release of sPLA2 unlike those from other mammalian cells. The significance of this observation remains to be elucidated.

MeSH terms

  • 8-Bromo Cyclic Adenosine Monophosphate / pharmacology
  • Adult
  • Animals
  • Arthritis, Rheumatoid / metabolism*
  • Arthritis, Rheumatoid / pathology
  • Cartilage, Articular / drug effects
  • Cartilage, Articular / metabolism*
  • Cartilage, Articular / pathology
  • Cells, Cultured
  • Cytokines / pharmacology
  • Humans
  • Infant, Newborn
  • Osteoarthritis / metabolism*
  • Osteoarthritis / pathology
  • Phospholipases A / metabolism*
  • Phospholipases A2
  • Rabbits
  • Reference Values

Substances

  • Cytokines
  • 8-Bromo Cyclic Adenosine Monophosphate
  • Phospholipases A
  • Phospholipases A2