Anti-parasitic effector mechanisms in human brain tumor cells: role of interferon-gamma and tumor necrosis factor-alpha

Eur J Immunol. 1996 Feb;26(2):487-92. doi: 10.1002/eji.1830260231.

Abstract

Toxoplasma gondii, an obligate intracellular parasite, is able to replicate in human brain cells. We recently showed that interferon (IFN)-gamma-activated cells from glioblastoma line 86HG39 were able to restrict Toxoplasma growth. The effector mechanism responsible for this toxoplasmostatic effect was shown by us to be the IFN-gamma-mediated activation of indolamine 2,3-dioxygenase (IDO), resulting in the degradation of the essential amino acid tryptophan. In contrast, glioblastoma 87HG31 was unable to restrict Toxoplasma growth after IFN-gamma activation, and IFN-gamma-mediated IDO activation was weak. We observed that tumor necrosis factor (TNF)-alpha alone is unable to activate IDO or to induce toxoplasmostasis in any glioblastoma cell line tested. Interestingly, we found that TNF-alpha and IFN-gamma were synergistic in the activation of IDO in glioblastoma cells 87HG31, 86HG39 and U373MG and in native astrocytes. This was shown by the measurement of enzyme activity as well as by the detection of IDO mRNA in TNF-alpha + IFN-gamma activated cells. This IDO activity results in a strong toxoplasmostatic effect mediated by glioblastoma cells activated simultaneously by both cytokines. Antibodies directed against TNF-alpha or IFN-gamma were able to inhibit IDO activity as well as the induction of toxoplasmostasis in glioblastoma cells stimulated with both cytokines. Furthermore, it was found that the addition of L-tryptophan to the culture medium completely blocks the antiparasitic effect. We therefore conclude that both TNF-alpha and IFN-gamma may be involved in the defense against cerebral toxoplasmosis by inducing IDO activity as an antiparasitic effector mechanism in brain cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / enzymology
  • Brain Neoplasms / enzymology
  • Brain Neoplasms / immunology
  • Brain Neoplasms / parasitology*
  • Drug Synergism
  • Enzyme Induction / immunology
  • Glioblastoma / enzymology
  • Glioblastoma / immunology
  • Glioblastoma / parasitology*
  • Humans
  • Indoleamine-Pyrrole 2,3,-Dioxygenase
  • Interferon-gamma / physiology*
  • Toxoplasma / drug effects
  • Toxoplasma / growth & development
  • Toxoplasma / immunology*
  • Tryptophan / metabolism
  • Tryptophan Oxygenase / biosynthesis
  • Tryptophan Oxygenase / physiology
  • Tumor Cells, Cultured
  • Tumor Necrosis Factor-alpha / physiology*

Substances

  • Indoleamine-Pyrrole 2,3,-Dioxygenase
  • Tumor Necrosis Factor-alpha
  • Interferon-gamma
  • Tryptophan
  • Tryptophan Oxygenase