Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans

Annu Rev Physiol. 1997:59:659-89. doi: 10.1146/annurev.physiol.59.1.659.

Abstract

Genetic and molecular studies of touch avoidance in the nematode Caenorhabditis elegans have resulted in a molecular model for a mechanotransducing complex. mec-4 and mec-10 encode proteins hypothesized to be subunits of a mechanically gated ion channel that are related to subunits of the vertebrate amiloride-sensitive epithelial Na+ channel. Products of mec-5, a novel collagen, and mec-9, a protein that includes multiple Kunitz-type protease inhibitor repeats and EGF repeats, may interact with the channel in the extracellular matrix. Inside the cell, specialized 15-protofilament microtubules composed of mec-12 alpha-tubulin and mec-7 beta-tubulin may be linked to the mechanosensitive channel by stomatin-homologous MEC-2. MEC-4 and MEC-10 are members of a large family of C. elegans proteins, the degenerins. Two other degenerins, UNC-8 and DEL-1, are candidate components of a stretch-sensitive channel in motor neurons. Implications for advancing understanding of mechanotransduction in other systems are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • Caenorhabditis elegans / physiology*
  • Humans
  • Mechanoreceptors / physiology*
  • Models, Molecular*
  • Physical Stimulation
  • Signal Transduction*
  • Touch / physiology