Determinants of HIV-1 coreceptor function on CC chemokine receptor 3. Importance of both extracellular and transmembrane/cytoplasmic regions

J Biol Chem. 1997 Aug 15;272(33):20420-6. doi: 10.1074/jbc.272.33.20420.

Abstract

The chemokine receptors CXCR4, CCR2b, CCR3, and CCR5 are cell entry coreceptors for HIV-1. Using an HIV-1 envelope (Env)-dependent cell-cell fusion model of entry, we show that CCR3 can interact with Envs from certain macrophage (M)-tropic strains (which also use CCR5), T cell line (TCL)-tropic laboratory-adapted strains (which also use CXCR4), and a dual-tropic primary isolate (which also uses CCR2b, CCR5, and CXCR4). Paradoxically, CCR1 is the closest homologue to CCR3 (63% amino acid identity), but lacked HIV-1 coreceptor activity. These results confirm and extend previous reports. Replacing the N-terminal segment of CCR3 with that of CCR1 abolished activity of the resulting chimera for M-tropic and TCL-tropic Envs, but not for the dual-tropic Env. Replacing extracellular loop 2 of CCR3 with that of CCR1 abolished activity for TCL-tropic Envs, but not for M- and dual-tropic Envs. A chimera containing all four extracellular regions of CCR3 on a backbone of CCR1 lacked any activity. Env-CCR3 interactions were strongly inhibited by the major CCR3 ligand eotaxin, but weakly or not at all by other CCR3 ligands. With primary macrophages, eotaxin induced transient calcium flux and partially inhibited fusion with cells expressing M-tropic Envs. We conclude that specificity determinants for different Envs are located in shared and distinct extracellular regions of CCR3, the transmembrane/cytoplasmic domains make major contributions to coreceptor function, and CCR3 may be used by certain HIV-1 strains as a cell fusion factor on macrophages.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Amino Acid Sequence
  • Animals
  • Chemokines / metabolism*
  • Gene Products, env / physiology
  • HeLa Cells
  • Humans
  • Macrophages / physiology
  • Mice
  • Molecular Sequence Data
  • Receptors, Cytokine / physiology*
  • Receptors, HIV / physiology*

Substances

  • Chemokines
  • Gene Products, env
  • Receptors, Cytokine
  • Receptors, HIV