The loading rate determines tumor targeting properties of methotrexate-albumin conjugates in rats

Anticancer Drugs. 1997 Aug;8(7):677-85.

Abstract

Albumin dominates the plasma proteins in man. Following our observation that albumin turnover in rodent tumors is markedly increased, we will present evidence that albumin can be employed as an efficient carrier for targeting cytostatic agents like methotrexate (MTX) into tumors. The considerable discrepancy in the molecular weight of MTX (454 Da) and albumin (about 67,000 Da) tempted researchers to load multiple drug molecules on one carrier molecule. It was supposed that the optimal therapeutic efficacy of MTX protein conjugates could be achieved by increasing the number of the molecules of MTX attached to the carrier. In this paper we will show that only loading rates of close to 1 mol of the cytostatic drug MTX/mol of albumin offer optimal conditions for targeting MTX-albumin conjugates into rodent tumors. Conjugates bearing 5, 7, 10 and 20 molecules of MTX on average showed considerable alterations in the HPLC profiles of the conjugates compared to albumin. Conjugates carrying 5-20 mol MTX, tagged with a residualizing radiolabel, were efficiently trapped by the liver before reaching the tumor. The tumor uptake rates of these conjugates declined dramatically with an increasing molecular load of the cytotoxic drug linked to albumin. Competition experiments with maleylated bovine serum albumin and fucoidan revealed that scavenger receptors present on the cells of the liver monocyte macrophage system were involved in this process. For further preclinical and clinical studies, we chose MTX-albumin conjugates, derivatized at a molar ratio of 1:1. These conjugates enjoy the same favorable tumor targeting properties like albumin, e.g. high tumor uptake rates, low liver uptake rates and a very long biological half-life.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Transport
  • Carcinoma 256, Walker / diagnostic imaging
  • Carcinoma 256, Walker / metabolism*
  • Cattle
  • Chromatography, High Pressure Liquid
  • Drug Carriers
  • Humans
  • Indium Radioisotopes / pharmacokinetics
  • Kinetics
  • Liver / diagnostic imaging
  • Liver / metabolism*
  • Male
  • Methotrexate / chemistry*
  • Methotrexate / pharmacokinetics*
  • Pentetic Acid / pharmacokinetics
  • Radionuclide Imaging
  • Rats
  • Rats, Sprague-Dawley
  • Serum Albumin / chemistry*
  • Serum Albumin / pharmacokinetics*
  • Structure-Activity Relationship
  • Tissue Distribution

Substances

  • Drug Carriers
  • Indium Radioisotopes
  • Serum Albumin
  • methotrexate-serum albumin
  • Pentetic Acid
  • Methotrexate