Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum

Appl Environ Microbiol. 1998 Feb;64(2):385-91. doi: 10.1128/AEM.64.2.385-391.1998.

Abstract

Mixed-linked glucanases (MLGases), which are extracellular enzymes able to hydrolyze beta 1,3-1,4-glucans (also known as mixed-linked glucans or cereal beta-glucans), were identified in culture filtrates of the plant-pathogenic fungus Cochliobolus carbonum. Three peaks of MLGase activity, designated Mlg1a, Mlg1b, and Mlg2, were resolved by cation-exchange and hydrophobic-interaction high-performance liquid chromatography (HPLC). Mlg1a and Mlg1b also hydrolyze beta 1,3-glucan (laminarin), whereas Mlg2 does not degrade beta 1,3-glucan but does degrade beta 1,4-glucan to a slight extent. Mlg1a, Mlg1b, and Mlg2 have monomer molecular masses of 33.5, 31, and 29.5 kDa, respectively. The N-terminal amino acid sequences of Mlg1a and Mlg1b are identical (AAYNLI). Mlg1a is glycosylated, whereas Mlg1b is not. The gene encoding Mlg1b, MLG1, was isolated by using PCR primers based on amino acid sequences of Mlg1b. The product of MLG1 has no close similarity to any known protein but does contain a motif (EIDI) that occurs at the active site of MLGases from several prokaryotes. An internal fragment of MLG1 was used to create mlg1 mutants by transformation-mediated gene disruption. The total MLGase and beta 1,3-glucanase activities in culture filtrates of the mutants were reduced by approximately 50 and 40%, respectively. When analyzed by cation-exchange HPLC, the mutants were missing the two peaks of MLGase activity corresponding to Mlg1a and Mlg1b. Together, the data indicate that Mlg1a and Mlg1b are products of the same gene, MLG1. The growth of mlg1 mutants in culture medium supplemented with macerated maize cell walls or maize bran and the disease symptoms on maize were identical to the growth and disease symptoms of the wild type.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Ascomycota / enzymology*
  • Ascomycota / genetics
  • Ascomycota / pathogenicity
  • Base Sequence
  • Cloning, Molecular
  • Gene Targeting*
  • Glycoside Hydrolases / chemistry
  • Glycoside Hydrolases / genetics*
  • Molecular Sequence Data
  • Mutation
  • Transformation, Genetic

Substances

  • Glycoside Hydrolases
  • licheninase

Associated data

  • GENBANK/U81606