Perchlorate and the thyroid gland

Pharmacol Rev. 1998 Mar;50(1):89-105.

Abstract

Perchlorate competitively blocks iodide from entering the thyroid by an effect on the Na+/I- symporter thus preventing the further synthesis of thyroid hormone but has no effect on the iodination process itself. It is concentrated by thyroid tissue in a manner similar to iodide but is not significantly metabolized in the gland or peripherally. What is not settled is whether there are additional perchlorate effects on iodide transport. Perchlorate has a fast turnover in the body and requires frequent daily doses for therapy of thyrotoxicosis. Perchlorate appears to be substantially more effective against large iodide loads than the thionamides, and, with long-term iodide contamination, combined therapy of perchlorate (with < or = 1 g/day) and thionamides is recommended for the more severe cases of thyrotoxicosis that may result from excess iodide or iodide-generating organic compounds, as for example with amiodarone. After approximately 30 days, the perchlorate dosage can be tapered or stopped, continuing with thionamides alone. This markedly increases its safe use. Despite serious side effects during its early use, lower dosages and shorter treatment periods appear to have prevented such reactions in its recent reintroduction, mostly for amiodarone-induced thyroid dysfunction. Perchlorate can also protect against inhibition of thyroid function and the resulting hypothyroidism caused by excess iodide, presumably by reducing the formation of an iodinated inhibitor. The reduction of the iodide pool by perchlorate thus has dual effects--reduction of excess hormone synthesis and hyperthyroidism, on the one hand, and reduction of thyroid inhibitor synthesis and hypothyroidism on the other. Perchlorate remains very useful also as a single dose application in tests measuring the discharge of radioiodide accumulated in the thyroid as a result of many different disruptions in the further metabolism of iodide in the thyroid gland.

Publication types

  • Review

MeSH terms

  • Amiodarone / adverse effects
  • Amiodarone / chemistry
  • Amiodarone / pharmacology
  • Amiodarone / therapeutic use
  • Animals
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / therapeutic use
  • Humans
  • Hypothyroidism / drug therapy
  • Iodide Peroxidase / drug effects
  • Iodide Peroxidase / metabolism
  • Iodides / metabolism
  • Iodides / pharmacology
  • Kinetics
  • Perchlorates / adverse effects
  • Perchlorates / chemistry
  • Perchlorates / metabolism
  • Perchlorates / pharmacology*
  • Perchlorates / therapeutic use
  • Sodium Compounds / adverse effects
  • Sodium Compounds / chemistry
  • Sodium Compounds / metabolism
  • Sodium Compounds / pharmacology*
  • Sodium Compounds / therapeutic use
  • Thyroid Gland / drug effects*
  • Thyroid Gland / physiology
  • Thyrotoxicosis / chemically induced
  • Thyrotoxicosis / drug therapy

Substances

  • Enzyme Inhibitors
  • Iodides
  • Perchlorates
  • Sodium Compounds
  • sodium perchlorate
  • Iodide Peroxidase
  • Amiodarone