Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B

Curr Biol. 1998 Jun 4;8(12):684-91. doi: 10.1016/s0960-9822(98)70274-x.

Abstract

Background: Protein kinase B (PKB) is involved in the regulation of apoptosis, protein synthesis and glycogen metabolism in mammalian cells. Phosphoinositide-dependent protein kinase (PDK-1) activates PKB in a manner dependent on phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), which is also needed for the translocation of PKB to the plasma membrane. It has been proposed that the amount of PKB activated is determined exclusively as a result of its translocation, and that a constitutively active pool of membrane-associated PDK-1 simply phosphorylates all the PKB made available. Here, we have investigated the effects of membrane localisation of PDK-1 on PKB activation.

Results: Ectopically expressed PDK-1 translocated to the plasma membrane in response to platelet-derived growth factor (PDGF) and translocation was sensitive to wortmannin, an inhibitor of phosphoinositide 3-kinase. Translocation of PDK-1 also occurred upon its co-expression with constitutively active phosphoinositide 3-kinase, but not with an inactive form. Overexpression of PDK-1 enhanced the ability of PDGF to activate PKB. PDK-1 disrupted in the pleckstrin homology (PH) domain which did not translocate to the membrane did not increase PKB activity in response to PDGF, whereas membrane-targeted PDK-1 activated PKB to the extent that it could not be activated further by PDGF.

Conclusions: In response to PDGF, binding of Ptdlns (3,4,5)P3 and/or Ptdlns(3,4)P2 to the PH domain of PDK-1 causes its translocation to the plasma membrane where it co-localises with PKB, significantly contributing to the scale of PKB activation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3-Phosphoinositide-Dependent Protein Kinases
  • Animals
  • Binding Sites
  • Biological Transport
  • COS Cells
  • Cell Line
  • Cell Membrane / metabolism
  • Enzyme Activation
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism
  • Platelet-Derived Growth Factor / pharmacology
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-akt

Substances

  • Platelet-Derived Growth Factor
  • Proto-Oncogene Proteins
  • 3-Phosphoinositide-Dependent Protein Kinases
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt