Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate

J Biol Chem. 1998 Jul 17;273(29):18040-6. doi: 10.1074/jbc.273.29.18040.

Abstract

Inositol phospholipids regulate a variety of cellular processes including proliferation, survival, vesicular trafficking, and cytoskeletal organization. Recently, two novel phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PtdIns-3,5-P2) and phosphatidylinositol- 5-phosphate (PtdIns-5-P), have been shown to exist in cells. PtdIns-3,5-P2, which is regulated by osmotic stress, appears to be synthesized by phosphorylation of PtdIns-3-P at the D-5 position. No evidence yet exists for how PtdIns-5-P is produced in cells. Understanding the regulation of synthesis of these molecules will be important for identifying their function in cellular signaling. To determine the pathway by which PtdIns-3,5-P2 and Ptd-Ins-5-P might be synthesized, we tested the ability of the recently cloned type I PtdIns-4-P 5-kinases (PIP5Ks) alpha and beta to phosphorylate PtdIns-3-P and PtdIns at the D-5 position of the inositol ring. We found that the type I PIP5Ks phosphorylate PtdIns-3-P to form PtdIns-3,5-P2. The identity of the PtdIns-3,5-P2 product was determined by anion exchange high performance liquid chromatography analysis and periodate treatment. PtdIns-3,4-P2 and PtdIns-3,4,5-P3 were also produced from PtdIns-3-P phosphorylation by both isoforms. When expressed in mammalian cells, PIP5K Ialpha and PIP5K Ibeta differed in their ability to synthesize PtdIns-3,5-P2 relative to PtdIns-3,4-P2. We also found that the type I PIP5Ks phosphorylate PtdIns to produce PtdIns-5-P and phosphorylate PtdIns-3,4-P2 to produce PtdIns-3,4,5-P3. Our findings suggest that type I PIP5Ks synthesize the novel phospholipids PtdIns-3,5-P2 and PtdIns-5-P. The ability of PIP5Ks to produce multiple signaling molecules indicates that they may participate in a variety of cellular processes.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Chromatography, High Pressure Liquid
  • Kinetics
  • Oxidation-Reduction
  • Periodic Acid / pharmacology
  • Phosphatidylinositol Phosphates / biosynthesis*
  • Phosphorylation
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*

Substances

  • Phosphatidylinositol Phosphates
  • phosphatidylinositol 3,5-diphosphate
  • phosphatidylinositol 3-phosphate
  • phosphatidylinositol 5-phosphate
  • Periodic Acid
  • metaperiodate
  • Phosphotransferases (Alcohol Group Acceptor)
  • 1-phosphatidylinositol-4-phosphate 5-kinase