Na+ channel blocking effects of cibenzoline on guinea-pig ventricular cells

Eur J Pharmacol. 1998 Jul 10;352(2-3):317-27. doi: 10.1016/s0014-2999(98)00354-9.

Abstract

The effects of cibenzoline on transmembrane action potentials were examined in right ventricular papillary muscles and in single ventricular myocytes isolated from guinea-pig hearts. In papillary muscles, cibenzoline > or = 3 microM caused a significant decrease in the maximum upstroke velocity (Vmax) of the action potential without affecting the action potential duration. The inhibition of Vmax was enhanced at higher stimulation frequencies. In the presence of cibenzoline, trains of stimuli at rates > or = 0.2 Hz led to a use-dependent inhibition of Vmax. The time constant for Vmax recovery (tauR) from the use-dependent block was 26.2 s. The use-dependent block of Vmax with cibenzoline was enhanced and tauR was shortened when the resting potential was depolarized by high (8, 10 mM) [K+]o. The curve relating membrane potential and Vmax in single myocytes was shifted by cibenzoline (10 microM) in a hyperpolarizing direction by 7.1 mV. In myocytes treated with cibenzoline (10 microM), a 10-ms conditioning clamp to 0 mV caused a significant decrease in Vmax of the subsequent test action potential; the Vmax inhibition was enhanced modestly in association with a prolongation of the 0 mV clamp pulse duration. In the presence of cibenzoline (3 microM), application of a train of depolarizing pulses (10 ms, 200 ms) to myocytes from the resting level (-80 mV) to 0 mV resulted in a progressive Vmax reduction in a pulse number-dependent manner. Unlike glibenclamide (30 microM), cibenzoline (10 microM) did not prevent the hypoxia-induced shortening of action potential duration in papillary muscles. These findings indicate that the onset and offset kinetics of use-dependent Na+ channel block by cibenzoline are slow. Given its state dependence, cibenzoline may be a blocker of activated Na+ channels. The inhibitory action of this compound on the ATP-sensitive K+ current (I(K), ATP) would be minimal or negligible at concentrations causing sufficient Na+ channel block.

MeSH terms

  • Animals
  • Anti-Arrhythmia Agents / pharmacology*
  • Female
  • Guinea Pigs
  • Heart Ventricles / cytology
  • Heart Ventricles / drug effects*
  • Imidazoles / pharmacology*
  • Male
  • Membrane Potentials / drug effects
  • Sodium Channel Blockers*

Substances

  • Anti-Arrhythmia Agents
  • Imidazoles
  • Sodium Channel Blockers
  • cifenline