Vanadium and diabetes

Mol Cell Biochem. 1998 Nov;188(1-2):73-80.

Abstract

We demonstrated in 1985 that vanadium administered in the drinking water to streptozotocin (STZ) diabetic rats restored elevated blood glucose to normal. Subsequent studies have shown that vanadyl sulfate can lower elevated blood glucose, cholesterol and triglycerides in a variety of diabetic models including the STZ diabetic rat, the Zucker fatty rat and the Zucker diabetic fatty rat. Long-term studies of up to one year did not show toxicity in control or STZ rats administered vanadyl sulfate in doses that lowered elevated blood glucose. In the BB diabetic rat, a model of insulin-dependent diabetes, vanadyl sulfate lowered the insulin requirement by up to 75%. Vanadyl sulfate is effective orally when administered by either single dose or chronic doses. It is also effective by the intraperitoneal route. We have also been able to demonstrate marked long-term effects of vanadyl sulfate in diabetic animals following treatment and withdrawal of vanadyl sulfate. Because vanadyl sulfate is not well absorbed we have synthesized and tested a number of organic vanadium compounds. One of these, bismaltolato-oxovanadium IV (BMOV), has shown promise as a therapeutic agent. BMOV is 2-3x more potent than vanadyl sulfate and has shown less toxicity. Recent studies from our laboratory have shown that the effects of vanadium are not due to a decrease in food intake and that while vanadium is deposited in bone it does not appear to affect bone strength or architecture. The mechanism of action of vanadium is currently under investigation. Several studies indicate that vanadium is a phosphatase inhibitor and that vanadium can activate serine/threonine kinases distal to the insulin receptor presumably by preventing dephosphorylation due to inhibition of phosphatases Short-term clinical trials using inorganic vanadium compounds in diabetic patients have been promising.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Diabetes Mellitus / drug therapy*
  • Diabetes Mellitus, Experimental / drug therapy
  • Humans
  • Hypoglycemic Agents / pharmacology*
  • Hypoglycemic Agents / therapeutic use
  • Vanadium / pharmacology*
  • Vanadium / therapeutic use

Substances

  • Hypoglycemic Agents
  • Vanadium