Variation in muscle and neuromuscular junction morphology between atrophy-resistant and atrophy-prone muscles supports failed re-innervation in aging muscle atrophy

Exp Gerontol. 2021 Dec:156:111613. doi: 10.1016/j.exger.2021.111613. Epub 2021 Nov 3.

Abstract

In advanced age, there is an accelerated decline in skeletal muscle mass that appears to be secondary to repeated cycles of denervation-reinnervation and eventually, failed reinnervation. However, whether variation in reinnervation capacity explains why some muscles are less vulnerable to age-related atrophy has not been addressed. In this study we examined changes in neuromuscular junction (NMJ) morphology, fiber cross-sectional area (CSA) and fiber type, accumulation of severely atrophied myofibers, and expression of a marker of denervation in four muscles that exhibit differences in the degree of age-related atrophy and which span the extremes of fiber type composition in 8 mo old (8 M) and 34 mo old (34 M) male Fischer 344 Brown Norway F1 hybrid rats. Aging muscle atrophy was most pronounced in the fast twitch gastrocnemius (Gas; 25%) and similar between extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscle (14-15%), whereas the slow-twitch adductor longus (AL) increased in mass by 21% between 8 M and 34 M (P < 0.05 for all). Only the Sol exhibited significant alterations in fiber type with aging, and there was a decrease in fiber CSA in the Gas, EDL, and Sol (P < 0.05) with aging that was not seen in the AL. Muscles that atrophied had an increased fraction of severely atrophic myofibers (P < 0.05), but this was not observed in the AL. The Gas and EDL both demonstrated a similar degree of age-related remodeling of pre- and post-synaptic NMJ components. On the other hand, pre- and post-synaptic morphology underwent greater changes with aging in the AL, and many of these same morphological variables were already greater in the Sol vs AL at 8 M, suggesting the Sol had already undergone substantial remodeling and may be nearing its adaptive limits. Consistent with this idea, analysis of NMJ morphology in Sol from 3 M rats exhibited similar values as 8 M AL, and the Sol demonstrated greater expression of the denervation marker neural cell adhesion molecule (NCAM) compared to the AL at 34 M. Collectively, our results are consistent with NMJ remodeling capacity being finite with aging and that maintained remodeling potential confers atrophy protection in aging skeletal muscle by reducing the degree of persistent denervation.

Keywords: Aging; Muscle atrophy; Neuromuscular junction; Rat; Sarcopenia.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging
  • Animals
  • Male
  • Muscle Fibers, Slow-Twitch
  • Muscle, Skeletal
  • Muscular Atrophy* / pathology
  • Neuromuscular Junction* / physiology
  • Rats
  • Rats, Inbred F344