A Tet-Inducible CRISPR Platform for High-Fidelity Editing of Human Pluripotent Stem Cells

Genes (Basel). 2022 Dec 14;13(12):2363. doi: 10.3390/genes13122363.

Abstract

Pluripotent stem cells (PSCs) offer an exciting resource for probing human biology; however, gene-editing efficiency remains relatively low in many cell types, including stem cells. Gene-editing using the CRISPR-Cas9 system offers an attractive solution that improves upon previous gene-editing approaches; however, like other technologies, off-target mutagenesis remains a concern. High-fidelity Cas9 variants greatly reduce off-target mutagenesis and offer a solution to this problem. To evaluate their utility as part of a cell-based gene-editing platform, human PSC lines were generated with a high-fidelity (HF) tetracycline-inducible engineered Streptococcus pyogenes SpCas9 (HF-iCas9) integrated into the AAVS1 safe harbor locus. By engineering cells with controllable expression of Cas9, we eliminated the need to include a large Cas9-expressing plasmid during cell transfection. Delivery of genetic cargo was further optimized by packaging DNA targeting guide RNAs (gRNAs) and donor fragments into a single plasmid backbone. The potential of homology-directed repair (HDR) based gene knock-in at the CLYBL safe harbor site and endogenous SOX2 and SIX6 genes were demonstrated. Moreover, we used non-homologous end-joining (NHEJ) for gene knockout of disease-relevant alleles. These high-fidelity CRISPR tools and the resulting HF-iCas9 cell lines will facilitate the production of cell-type reporters and mutants across different genetic backgrounds.

Keywords: CRISPR; Cas9; DTS; HDR; gene-editing; homology-directed repair; iCas9; stem cell; transfection.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • CRISPR-Cas Systems* / genetics
  • DNA End-Joining Repair
  • Gene Editing / methods
  • Humans
  • Mutagenesis
  • Pluripotent Stem Cells*