Gene co-expression modules behind the three-pistil formation in wheat

Funct Integr Genomics. 2023 Apr 13;23(2):123. doi: 10.1007/s10142-023-01052-w.

Abstract

Multi-pistil trait in wheat is of great potential value in plant development research and crop breeding. Our previous studies identified the Pis1 locus that causes three pistils in wheat by genetic mapping using multiple DNA marker systems. However, there are still 26 candidate genes on the locus, and the causal gene remains to be found. In this study, we aimed to approach the molecular mechanism of multi-pistil formation. Comparative RNA sequencing (RNA-Seq) during the pistil formation was undertaken in four wheat lines: a three-pistil mutant TP, a single-pistil TILLING mutant of TP (SP), a three-pistil near-isogenic line CM28TP with the background of cultivar Chunmai 28 (CM28), and CM28. Electron microscopic analysis specified probable developmental stages of young spikes for the three-pistil formation. mRNA sequencing in the young spikes of the four lines represented 253 down-regulated genes and 98 up-regulated genes in both three-pistil lines, which included six potential genes for ovary development. Weighted gene co-expression analysis represented three-pistil trait-associated transcription factor-like genes, among which one hub gene, ARF5, was the most highlighted. ARF5 is on the Pis1 locus and an orthologue of MONOPTEROS which mediates tissue development in Arabidopsis. qRT-PCR validation implies that the deficiency of ARF5 underlies the three-pistil formation in wheat.

Keywords: ARF5; RNA sequencing; Three pistils; Wheat.

Publication types

  • Letter

MeSH terms

  • Flowers / genetics
  • Gene Expression Regulation, Plant*
  • Genetic Markers
  • Plant Breeding
  • Triticum* / genetics

Substances

  • Genetic Markers