A novel rigid sound-absorbing material made from used palm oil-based polyurethane foam (PUF) and water hyacinth fiber (WHF) composite was developed in this research. The NCO index was set at 100, while the WHF content was set at 1%wt with mesh sizes ranging from 80 to 20. The mechanical properties, the morphology, the flammability, and the sound absorption coefficient (SAC) of the PUF composite were all investigated. When the WHF size was reduced from 80 to 20, the compression strength of the PUF increased from 0.33 to 0.47 N/mm2. Furthermore, the use of small fiber size resulted in a smaller pore size of the PUF composite and improved the sound absorption and flammability. A feasible sound-absorbing material was a PUF composite with a WHF mesh size of 80 and an SAC value of 0.92. As a result, PUF derived from both water hyacinth and used palm oil could be a promising green alternative material for sound-absorbing applications.
Keywords: polyurethane foam; sound-absorbing material; used palm oil; water hyacinth fiber.