Self-Assembled Epitaxial Ferroelectric Oxide Nanospring with Super-Scalability

Adv Mater. 2022 Apr;34(13):e2108419. doi: 10.1002/adma.202108419. Epub 2022 Feb 19.

Abstract

Oxide nanosprings have attracted many research interests because of their anticorrosion, high-temperature tolerance, oxidation resistance, and enhanced-mechanic-response from unique helix structures, enabling various applications like nanomanipulators, nanomotors, nanoswitches, sensors, and energy harvesters. However, preparing oxide nanosprings is a challenge for their intrinsic lack of elasticity. Here, an approach for preparing self-assembled, epitaxial, ferroelectric nanosprings with built-in strain due to the lattice mismatch in freestanding La0.7 Sr0.3 MnO3 /BaTiO3 (LSMO/BTO) bilayer heterostructures is developed. It is found that these LSMO/BTO nanosprings can be extensively pulled or pushed up to their geometrical limits back and forth without breaking, exhibiting super-scalability with full recovery capability. The phase-field simulations reveal that the excellent scalability originates from the continuous ferroelastic domain structures, resulting from twisting under co-existing axial and shear strains. In addition, the oxide heterostructural springs exhibit strong resilience due to the limited plastic deformation nature and the built-in strain between the bilayers. This discovery provides an alternative way for preparing and operating functional oxide nanosprings that can be applied to various technologies.

Keywords: elasticity; ferroelectrics; freestanding oxides; polarization; spring.