Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric group 75

J Clin Microbiol. 1989 Sep;27(9):2046-9. doi: 10.1128/jcm.27.9.2046-2049.1989.

Abstract

The name Enterobacter hormaechei is proposed for a new species of the family Enterobacteriaceae, formerly called Enteric Group 75, which consists of 23 strains, 22 of which were isolated from humans. DNAs from 12 E. hormaechei strains tested were highly related to the type strain (ATCC 49162) by DNA hybridization, using the hydroxyapatite method (80 to 97% in 60 degrees C reactions; 80 to 90% in 75 degrees C reactions). The strains were most closely related (50 to 63%) to Enterobacter cloacae, Enterobacter dissolvens, Enterobacter taylorae, and Enterobacter nimipressuralis. E. hormaechei strains were positive within 48 h for the following: Voges-Proskauer test; citrate utilization (Simmons and Christensen); urea hydrolysis (87%); ornithine decarboxylase; growth in potassium cyanide (KCN); malonate utilization; production of acid from D-glucose, L-arabinose, cellobiose, dulcitol (87%), D-galactose, maltose, D-mannitol, D-mannose, L-rhamnose, sucrose, trehalose, and D-xylose; acid production from mucate; nitrate reduction; and o-nitrophenyl-beta-D-galactopyranoside. Delayed positive reactions were seen in tests for arginine dihydrolase, gas from D-glucose, acid from alpha-methyl-D-glucoside, and acetate utilization. E. hormaechei was negative in tests for indole production; H2S production; phenylalanine deaminase; lysine decarboxylase; gelatin hydrolysis; acid production from D-adonitol, D-arabitol, erythritol, glycerol, i(myo)-inositol, melibiose, raffinose, and D-sorbitol; esculin hydrolysis; DNase; lipase; and tyrosine clearing. Variable reactions occurred in tests for methyl red, motility, and tartrate. All strains tested were susceptible or moderately susceptible to amikacin, azlocillin, cefotaxime, ceftazidime, ceftriaxone, chloramphenicol, gentamicin, mezlocillin, moxalactam, piperacillin, trimethoprim-sulfamethoxazole, sulfisoxazole, thienamycin, tobramycin, and trimethoprim. All strains tested were resistant to nitrofurantoin; the majority were resistant to ampicillin, cefoxitin, and cephalothin. Four isolates were from blood; most other isolates were from wounds or sputum.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Anti-Bacterial Agents / pharmacology
  • Child
  • DNA, Bacterial / analysis
  • Enterobacter / classification*
  • Enterobacter / drug effects
  • Enterobacter / genetics
  • Enterobacteriaceae / classification*
  • Enterobacteriaceae Infections / blood
  • Enterobacteriaceae Infections / microbiology*
  • Female
  • Humans
  • Infant, Newborn
  • Male
  • Middle Aged
  • Nucleic Acid Hybridization
  • Sputum / microbiology
  • Terminology as Topic*
  • Wound Infection / microbiology*

Substances

  • Anti-Bacterial Agents
  • DNA, Bacterial