Regulation of mitochondrial proteostasis by the proton gradient

EMBO J. 2022 Aug 16;41(16):e110476. doi: 10.15252/embj.2021110476. Epub 2022 Aug 1.

Abstract

Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m-AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+ /H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m-AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m-AAA protease. The m-AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.

Keywords: AFG3L2; TMBIM5; mitochondrial calcium; proton gradient; respiratory chain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Dependent Proteases / genetics
  • ATP-Dependent Proteases / metabolism
  • ATPases Associated with Diverse Cellular Activities / metabolism
  • Mitochondria / metabolism
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism
  • Proteome / metabolism
  • Proteostasis*
  • Protons*

Substances

  • Mitochondrial Proteins
  • Proteome
  • Protons
  • ATP-Dependent Proteases
  • ATPases Associated with Diverse Cellular Activities