In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design

Nat Chem Biol. 2020 Aug;16(8):912-919. doi: 10.1038/s41589-020-0559-0. Epub 2020 Jun 15.

Abstract

The design and optimization of biosynthetic pathways for industrially relevant, non-model organisms is challenging due to transformation idiosyncrasies, reduced numbers of validated genetic parts and a lack of high-throughput workflows. Here we describe a platform for in vitro prototyping and rapid optimization of biosynthetic enzymes (iPROBE) to accelerate this process. In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein synthesis and then metabolic pathways are assembled in a mix-and-match fashion to assess pathway performance. We demonstrate iPROBE by screening 54 different cell-free pathways for 3-hydroxybutyrate production and optimizing a six-step butanol pathway across 205 permutations using data-driven design. Observing a strong correlation (r = 0.79) between cell-free and cellular performance, we then scaled up our highest-performing pathway, which improved in vivo 3-HB production in Clostridium by 20-fold to 14.63 ± 0.48 g l-1. We expect iPROBE to accelerate design-build-test cycles for industrial biotechnology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biosynthetic Pathways / drug effects
  • Biosynthetic Pathways / physiology*
  • Biotechnology / methods
  • Cell-Free System / metabolism
  • Metabolic Engineering / methods*
  • Metabolic Networks and Pathways / physiology
  • Protein Biosynthesis / genetics
  • Protein Biosynthesis / physiology
  • Synthetic Biology / methods*